Comments on randomly sampled non local means image filter

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

In this work we comment the results presented in [1] regarding a random sampling approach of the Non Local Means (NLM) image denoising filter with respect to computational cost and denoising performance. We will show that although the approach is novel and mathematically revealing, the computation cost of the approach is higher, and the PSNR lower, compared to the classical version. Furthermore, we will present a probabilistic model to evaluate the performance of different versions of NLM and tune its parameters.

Original languageEnglish
Title of host publicationProgress in Pattern Recognition Image Analysis, Computer Vision and Applications - 19th Iberoamerican Congress, CIARP 2014, Proceedings
EditorsEduardo Bayro-Corrochano, Edwin Hancock
PublisherSpringer Verlag
Pages498-505
Number of pages8
ISBN (Electronic)9783319125671
DOIs
StatePublished - 2014
Event19th Iberoamerican Congress on Pattern Recognition, CIARP 2014 - Puerto Vallarta, Mexico
Duration: 2 Nov 20145 Nov 2014

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume8827
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference19th Iberoamerican Congress on Pattern Recognition, CIARP 2014
Country/TerritoryMexico
CityPuerto Vallarta
Period2/11/145/11/14

Fingerprint

Dive into the research topics of 'Comments on randomly sampled non local means image filter'. Together they form a unique fingerprint.

Cite this