Diffusion models meet image counter-forensics

Matías Tailanián, Marina Gardella, Alvaro Pardo, Pablo Musé

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Scopus citations

Abstract

From its acquisition in the camera sensors to its storage, different operations are performed to generate the final image. This pipeline imprints specific traces into the image to form a natural watermark. Tampering with an image disturbs these traces; these disruptions are clues that are used by most methods to detect and locate forgeries. In this article, we assess the capabilities of diffusion models to erase the traces left by forgers and, therefore, deceive forensics methods. Such an approach has been recently introduced for adversarial purification, achieving significant performance. We show that diffusion purification methods are well suited for counter-forensics tasks. Such approaches outperform already existing counter-forensics techniques both in deceiving forensics methods and in preserving the natural look of the purified images. The source code is publicly available at https://github.com/mtailanian/diff-cf.

Original languageEnglish
Title of host publicationProceedings - 2024 IEEE Winter Conference on Applications of Computer Vision, WACV 2024
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3913-3923
Number of pages11
ISBN (Electronic)9798350318920
DOIs
StatePublished - 3 Jan 2024
Event2024 IEEE Winter Conference on Applications of Computer Vision, WACV 2024 - Waikoloa, United States
Duration: 4 Jan 20248 Jan 2024

Publication series

NameProceedings - 2024 IEEE Winter Conference on Applications of Computer Vision, WACV 2024

Conference

Conference2024 IEEE Winter Conference on Applications of Computer Vision, WACV 2024
Country/TerritoryUnited States
CityWaikoloa
Period4/01/248/01/24

Keywords

  • 3D
  • adversarial attack and defense methods
  • Adversarial learning
  • Algorithms
  • Algorithms
  • etc
  • Generative models for image
  • video

Fingerprint

Dive into the research topics of 'Diffusion models meet image counter-forensics'. Together they form a unique fingerprint.

Cite this