A novel architecture for the classification and visualization of sequential data

Jorge Couchet, Enrique Ferreira, André Fonseca, Daniel Manrique

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

This paper1 introduces a novel architecture to efficiently code in a self-organized manner, data from sequences or a hierarchy of sequences. The main objective of the architecture proposed is to achieve an inductive model of the sequential data through a learning algorithm in a finite vector space with generalization and prediction properties improved by the compression process. The architecture consists of a hierarchy of recurrent self-organized maps with emergence which performs a fractal codification of the sequences. An adaptive outlier detection algorithm is used to automatically extract the emergent properties of the maps. A visualization technique to help the analysis and interpretation of data is also developed. Experiments and results for the architecture are shown for an anomaly intrusion detection problem.

Idioma originalInglés
Título de la publicación alojadaAdaptive and Natural Computing Algorithms - 8th International Conference, ICANNGA 2007, Proceedings
EditorialSpringer Verlag
Páginas730-738
Número de páginas9
EdiciónPART 1
ISBN (versión impresa)9783540715894
DOI
EstadoPublicada - 2007
Evento8th International Conference on Adaptive and Natural Computing Algorithms, ICANNGA 2007 - Warsaw
Duración: 11 abr. 200714 abr. 2007

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
NúmeroPART 1
Volumen4431 LNCS
ISSN (versión impresa)0302-9743
ISSN (versión digital)1611-3349

Conferencia

Conferencia8th International Conference on Adaptive and Natural Computing Algorithms, ICANNGA 2007
País/TerritorioPoland
CiudadWarsaw
Período11/04/0714/04/07

Huella

Profundice en los temas de investigación de 'A novel architecture for the classification and visualization of sequential data'. En conjunto forman una huella única.

Citar esto