A syzygetic approach to the smoothability of zero-dimensional schemes

Daniel Erman, Mauricio Velasco

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

12 Citas (Scopus)

Resumen

We consider the question of which zero-dimensional schemes deform to a collection of distinct points; equivalently, we ask which Artinian k-algebras deform to a product of fields. We introduce a syzygetic invariant which sheds light on this question for zero-dimensional schemes of regularity two. This invariant imposes obstructions for smoothability in general, and it completely answers the question of smoothability for certain zero-dimensional schemes of low degree. The tools of this paper also lead to other results about Hilbert schemes of points, including a characterization of nonsmoothable zero-dimensional schemes of minimal degree in every embedding dimension d≥4.

Idioma originalInglés
Páginas (desde-hasta)1143-1166
Número de páginas24
PublicaciónAdvances in Mathematics
Volumen224
N.º3
DOI
EstadoPublicada - jun. 2010
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'A syzygetic approach to the smoothability of zero-dimensional schemes'. En conjunto forman una huella única.

Citar esto