Adaptive matrix distances aiming at optimum regression subspaces

M. Strickert, Axel J. Soto, Gustavo E. Vazquez

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

6 Citas (Scopus)

Resumen

A new supervised adaptive metric approach is introduced for mapping an input vector space to a plottable low-dimensional subspace in which the pairwise distances are in maximum correlation with distances of the associated target space. The new formalism of multivariate subspace regression (MSR) is based on cost function optimization, and it allows assessing the relevance of input vector attributes. An application to molecular descriptors in a chemical compound database is presented for targeting octanol-water partitioning properties.

Idioma originalInglés
Título de la publicación alojadaProceedings of the 18th European Symposium on Artificial Neural Networks - Computational Intelligence and Machine Learning, ESANN 2010
Páginas93-98
Número de páginas6
EstadoPublicada - 2010
Publicado de forma externa
Evento18th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2010 - Bruges
Duración: 28 abr. 201030 abr. 2010

Serie de la publicación

NombreProceedings of the 18th European Symposium on Artificial Neural Networks - Computational Intelligence and Machine Learning, ESANN 2010

Conferencia

Conferencia18th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2010
País/TerritorioBelgium
CiudadBruges
Período28/04/1030/04/10

Huella

Profundice en los temas de investigación de 'Adaptive matrix distances aiming at optimum regression subspaces'. En conjunto forman una huella única.

Citar esto