Resumen
We study the problem of reconstructing a positive discrete measure on a compact set K⊆Rn from a finite set of moments (possibly known only approximately) via convex optimization. We give new uniqueness results, new quantitative estimates for approximate recovery and a new sum-of-squares based hierarchy for approximate super-resolution on compact semi-algebraic sets.
Idioma original | Inglés |
---|---|
Páginas (desde-hasta) | 251-278 |
Número de páginas | 28 |
Publicación | Applied and Computational Harmonic Analysis |
Volumen | 52 |
DOI | |
Estado | Publicada - may. 2021 |
Publicado de forma externa | Sí |