Automatic Neurocranial Landmarks Detection from Visible Facial Landmarks Leveraging 3D Head Priors

Oded Schlesinger, Raj Kundu, Stefan Goetz, Guillermo Sapiro, Angel V. Peterchev, J. Matias Di Martino

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

2 Citas (Scopus)

Resumen

The localization and tracking of neurocranial landmarks is essential in modern medical procedures, e.g., transcranial magnetic stimulation (TMS). However, state-of-the-art treatments still rely on the manual identification of head targets and require setting retroreflective markers for tracking. This limits the applicability and scalability of TMS approaches, making them time-consuming, dependent on expensive hardware, and prone to errors when retroreflective markers drift from their initial position. To overcome these limitations, we propose a scalable method capable of inferring the position of points of interest on the scalp, e.g., the International 10–20 System’s neurocranial landmarks. In contrast with existing approaches, our method does not require human intervention or markers; head landmarks are estimated leveraging visible facial landmarks, optional head size measurements, and statistical head model priors. We validate the proposed approach on ground truth data from 1,150 subjects, for which facial 3D and head information is available; our technique achieves a localization RMSE of 2.56 mm on average, which is of the same order as reported by high-end techniques in TMS. Our implementation is available at https://github.com/odedsc/ANLD.

Idioma originalInglés
Título de la publicación alojadaClinical Image-Based Procedures, Fairness of AI in Medical Imaging, and Ethical and Philosophical Issues in Medical Imaging - 12th International Workshop, CLIP 2023 1st International Workshop, FAIMI 2023 and 2nd International Workshop, EPIMI 2023, Proceedings
EditoresStefan Wesarg, Cristina Oyarzun Laura, Esther Puyol Antón, Andrew P. King, John S.H. Baxter, Marius Erdt, Klaus Drechsler, Moti Freiman, Yufei Chen, Islem Rekik, Roy Eagleson, Aasa Feragen, Veronika Cheplygina, Melani Ganz-Benjaminsen, Enzo Ferrante, Ben Glocker, Daniel Moyer, Eikel Petersen
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas12-20
Número de páginas9
ISBN (versión impresa)9783031452482
DOI
EstadoPublicada - 2023
Publicado de forma externa
Evento12th International Workshop on Clinical Image-Based Procedures, CLIP 2023, 1st MICCAI Workshop on Fairness of AI in Medical Imaging, FAIMI 2023, held in conjunction with MICCAI 2023 and 2nd MICCAI Workshop on the Ethical and Philosophical Issues in Medical Imaging, EPIMI 2023 - Vancouver
Duración: 12 oct. 202312 oct. 2023

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volumen14242 LNCS
ISSN (versión impresa)0302-9743
ISSN (versión digital)1611-3349

Conferencia

Conferencia12th International Workshop on Clinical Image-Based Procedures, CLIP 2023, 1st MICCAI Workshop on Fairness of AI in Medical Imaging, FAIMI 2023, held in conjunction with MICCAI 2023 and 2nd MICCAI Workshop on the Ethical and Philosophical Issues in Medical Imaging, EPIMI 2023
País/TerritorioCanada
CiudadVancouver
Período12/10/2312/10/23

Huella

Profundice en los temas de investigación de 'Automatic Neurocranial Landmarks Detection from Visible Facial Landmarks Leveraging 3D Head Priors'. En conjunto forman una huella única.

Citar esto