Classification of basic human emotions from electroencephalography data

Ximena Ferńandez, Rosana García, Enrique Ferreira, Juan Menéndez

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

2 Citas (Scopus)

Resumen

This paper explores the combination of known signal processing techniques to analyze electroencephalography (EEG) data for the classification of a set of basic human emotions. An Emotiv EPOC headset with 16 electrodes was used to measure EEG data from a population of 24 subjects who were presented an audiovisual stimuli designed to evoke 4 emotions (rage, fear, fun and neutral). Raw data was preprocessed to eliminate noise, interference and physiologic artifacts. Discrete Wavelet Transform (DWT) was used to extract its main characteristics and define relevant features. Classification was performed using different algorithms and results compared. The best results were obtained when using meta-learning techniques with classification errors at 5 %. Final conclusions and future work are discussed.

Idioma originalInglés
Título de la publicación alojadaLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
EditoresAlvaro Pardo, Josef Kittler
EditorialSpringer Verlag
Páginas108-115
Número de páginas8
ISBN (versión impresa)9783319257501
DOI
EstadoPublicada - 2015
Evento20th Iberoamerican Congress on on Pattern Recognition, CIARP 2015 - Montevideo
Duración: 9 nov. 201512 nov. 2015

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volumen9423
ISSN (versión impresa)0302-9743
ISSN (versión digital)1611-3349

Conferencia

Conferencia20th Iberoamerican Congress on on Pattern Recognition, CIARP 2015
País/TerritorioUruguay
CiudadMontevideo
Período9/11/1512/11/15

Huella

Profundice en los temas de investigación de 'Classification of basic human emotions from electroencephalography data'. En conjunto forman una huella única.

Citar esto