Resumen
Let X be a del Pezzo surface of degree one over an algebraically closed field, and let Cox(X) be its total coordinate ring. We prove the missing case of a conjecture of Batyrev and Popov, which states that Cox(X) is a quadratic algebra. We use a complex of vector spaces whose homology determines part of the structure of the minimal free Pic(X)-graded resolution of Cox(X) over a polynomial ring. We show that sufficiently many Betti numbers of this minimal free resolution vanish to establish the conjecture.
Idioma original | Inglés |
---|---|
Páginas (desde-hasta) | 729-761 |
Número de páginas | 33 |
Publicación | Algebra and Number Theory |
Volumen | 3 |
N.º | 7 |
DOI | |
Estado | Publicada - 2009 |
Publicado de forma externa | Sí |