Improving electricity non technical losses detection including neighborhood information

Pablo Massaferro, Henry Marichal, Matias Di Martino, Fernando Santomauro, Juan Pablo Kosut, Alicia Fernandez

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

6 Citas (Scopus)

Resumen

Non technical losses (NTL) cause significant damage to power supply companies' economies. Detecting abnormal clients behavior is an important and difficult task. In this paper we analyze the impact of considering customers geo-localization information, in automatic NTL detection. A methodology to find optimal grid sizes to compute a set of local features with a random search procedure is proposed. The number and size of the grids, and other classification algorithm parameters are adjusted to maximize the area under receiver operating characteristic curve (AUC), showing performance improvements in a data set of 6 thousand of Uruguayan residential customers. Comparative analysis with different sub-sets of characteristics, that include the monthly consumption, contractual information and the new local features are presented. In addition, we probe that raw customers' geographical location used as an input feature, gives competitive results as well. In addition we evaluate a entire new database of 6 thousand Uruguayan customers, whom were inspected in-site by UTE experts between 2015 and 2017.

Idioma originalInglés
Título de la publicación alojada2018 IEEE Power and Energy Society General Meeting, PESGM 2018
EditorialIEEE Computer Society
ISBN (versión digital)9781538677032
DOI
EstadoPublicada - 21 dic. 2018
Evento2018 IEEE Power and Energy Society General Meeting, PESGM 2018 - Portland
Duración: 5 ago. 201810 ago. 2018

Serie de la publicación

NombreIEEE Power and Energy Society General Meeting
Volumen2018-August
ISSN (versión impresa)1944-9925
ISSN (versión digital)1944-9933

Conferencia

Conferencia2018 IEEE Power and Energy Society General Meeting, PESGM 2018
País/TerritorioUnited States
CiudadPortland
Período5/08/1810/08/18

Huella

Profundice en los temas de investigación de 'Improving electricity non technical losses detection including neighborhood information'. En conjunto forman una huella única.

Citar esto