Laser powder bed fusion dataset for relative density prediction of commercial metallic alloys

Germán Omar Barrionuevo, Iván La Fé-Perdomo, Jorge A. Ramos-Grez

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

Resumen

Laser-based powder bed fusion (L-PBF) technology stands out for its ability to create complex, high-performance parts, optimizing design freedom and material efficiency. Despite technical and financial challenges, it is attractive to industries where performance, weight reduction, and customization are critical. In L-PBF, relative density (RD) is a key factor that directly impacts the mechanical properties and overall quality of printed parts. However, predicting RD is a complex and costly task due to the numerous factors involved. This study addresses this need by creating a large-scale dataset for RD prediction in L-PBF, consisting of 1579 samples of commercial alloys from the literature. It includes printing conditions and other crucial inputs like protective atmosphere, powder size distribution, and part geometry. This dataset offers a valuable resource for researchers to benchmark their results, better understand key factors influencing RD, and validate models or explore new machine-learning approaches tailored to L-PBF.

Idioma originalInglés
Número de artículo375
PublicaciónScientific data
Volumen12
N.º1
DOI
EstadoPublicada - dic. 2025

Huella

Profundice en los temas de investigación de 'Laser powder bed fusion dataset for relative density prediction of commercial metallic alloys'. En conjunto forman una huella única.

Citar esto