Motor intention recognition in EEG: In pursuit of a relevant feature set

Pablo A. Iturralde, Martín Patrone, Federico Lecumberry, Alicia Fernández

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

2 Citas (Scopus)

Resumen

Brain-computer interfaces (BCIs) based on electroencephalograms (EEG) are a noninvasive and cheap alternative to get a communication channel between brain and computers. Some of the main issues with EEG signals are its high dimensionality, high inter-user variance, and non-stationarity. In this work we present different approaches to deal with the high dimensionality of the data, finding relevant descriptors in EEG signals for motor intention recognition: first, a classical dimensionality reduction method using Diffusion Distance, second a technique based on spectral analysis of EEG channels associated with the frontal and prefrontal cortex, and third a projection over average signals. Performance analysis for different sets of features is done, showing that some of them are more robust to user variability.

Idioma originalInglés
Título de la publicación alojadaProgress in Pattern Recognition, Image Analysis, Computer Vision, and Applications - 17th Iberoamerican Congress, CIARP 2012, Proceedings
Páginas551-558
Número de páginas8
DOI
EstadoPublicada - 2012
Publicado de forma externa
Evento17th Iberoamerican Congress on Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, CIARP 2012 - Buenos Aires
Duración: 3 set. 20126 set. 2012

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volumen7441 LNCS
ISSN (versión impresa)0302-9743
ISSN (versión digital)1611-3349

Conferencia

Conferencia17th Iberoamerican Congress on Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, CIARP 2012
País/TerritorioArgentina
CiudadBuenos Aires
Período3/09/126/09/12

Huella

Profundice en los temas de investigación de 'Motor intention recognition in EEG: In pursuit of a relevant feature set'. En conjunto forman una huella única.

Citar esto