Nested learning for multi-level classification

Raphael Achddou, J. Matias Di Martino, Guillermo Sapiro

Producción científica: Contribución a una revistaArtículo de la conferenciarevisión exhaustiva

5 Citas (Scopus)

Resumen

Deep neural networks models are generally designed and trained for a specific type and quality of data. In this work, we address this problem in the context of nested learning. For many applications, both the input data, at training and testing, and the prediction can be conceived at multiple nested quality/resolutions. We show that by leveraging this multiscale information, the problem of poor generalization and prediction overconfidence, as well as the exploitation of multiple training data quality, can be efficiently addressed. We evaluate the proposed ideas in six public datasets: MNIST, Fashion-MNIST, CIFAR10, CIFAR100, Plantvillage, and DBPEDIA. We observe that coarsely annotated data can help to solve fine predictions and reduce overconfidence significantly. We also show that hierarchical learning produces models intrinsically more robust to adversarial attacks and data perturbations.

Idioma originalInglés
Páginas (desde-hasta)2815-2819
Número de páginas5
PublicaciónProceedings - ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing
Volumen2021-June
DOI
EstadoPublicada - 2021
Publicado de forma externa
Evento2021 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2021 - Virtual, Toronto
Duración: 6 jun. 202111 jun. 2021

Huella

Profundice en los temas de investigación de 'Nested learning for multi-level classification'. En conjunto forman una huella única.

Citar esto