Novel classifier scheme for imbalanced problems

Matías Di Martino, Alicia Fernández, Pablo Iturralde, Federico Lecumberry

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

27 Citas (Scopus)

Resumen

There is an increasing interest in the design of classifiers for imbalanced problems due to their relevance in many fields, such as fraud detection and medical diagnosis. In this work we present a new classifier developed specially for imbalanced problems, where maximum F-measure instead of maximum accuracy guide the classifier design. Theoretical basis, algorithm description and real experiments are presented. The algorithm proposed shows suitability and a very good performance in imbalance scenarios and high overlapping between classes.

Idioma originalInglés
Páginas (desde-hasta)1146-1151
Número de páginas6
PublicaciónPattern Recognition Letters
Volumen34
N.º10
DOI
EstadoPublicada - 2013
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Novel classifier scheme for imbalanced problems'. En conjunto forman una huella única.

Citar esto