Optimal and linear F-measure classifiers applied to non-technical losses detection

Fernanda Rodriguez, Matías Di Martino, Juan Pablo Kosut, Fernando Santomauro, Federico Lecumberry, Alicia Fernández

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

4 Citas (Scopus)

Resumen

Non-technical loss detection represents a very high cost to power supply companies. Finding classifiers that can deal with this problem is not easy as they have to face a high imbalance scenario with noisy data. In this paper we propose to use Optimal F-measure Classifier (OFC) and Linear F-measure Classifier (LFC), two novel algorithms that are designed to work in problems with unbalanced classes. We compare both algorithm performances with other previously used methods to solve automatic fraud detection problem.

Idioma originalInglés
Título de la publicación alojadaLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
EditoresAlvaro Pardo, Josef Kittler
EditorialSpringer Verlag
Páginas83-91
Número de páginas9
ISBN (versión impresa)9783319257501
DOI
EstadoPublicada - 2015
Publicado de forma externa
Evento20th Iberoamerican Congress on on Pattern Recognition, CIARP 2015 - Montevideo
Duración: 9 nov. 201512 nov. 2015

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volumen9423
ISSN (versión impresa)0302-9743
ISSN (versión digital)1611-3349

Conferencia

Conferencia20th Iberoamerican Congress on on Pattern Recognition, CIARP 2015
País/TerritorioUruguay
CiudadMontevideo
Período9/11/1512/11/15

Huella

Profundice en los temas de investigación de 'Optimal and linear F-measure classifiers applied to non-technical losses detection'. En conjunto forman una huella única.

Citar esto