Performance improvement in a fingerprint classification system using anisotropic diffusion

Gonzalo Vallarino, Gustavo Gianarelli, Jose Barattini, Alvaro Gómez, Alicia Fernández, Alvaro Pardo

Producción científica: Capítulo del libro/informe/acta de congresoCapítulorevisión exhaustiva

5 Citas (Scopus)

Resumen

In a previous work, [1], we evaluated a classification algorithm based on the Karu-Jain method [2] and compared the performance with a fully manual method used at the Dirección Nacional de Identification Civil (DNIC). In this paper, we analyze the high performance improvement achieved using anisotropic diffusion instead of pure averaging for the directions smoothing. We also define a quality measure that shows high correlation with the experts' criteria. The results are evaluated over 2800 images extracted from a 4 million fingerprint card archive maintained by DNIC.

Idioma originalInglés
Título de la publicación alojadaLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
EditoresAlberto Sanfeliu, Jose Francisco Martinez-Trinidad, Jesus Ariel Carrasco-Ochoa
EditorialSpringer Verlag
Páginas582-588
Número de páginas7
ISBN (versión impresa)3540235272
DOI
EstadoPublicada - 2004
Publicado de forma externa

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volumen3287
ISSN (versión impresa)0302-9743
ISSN (versión digital)1611-3349

Huella

Profundice en los temas de investigación de 'Performance improvement in a fingerprint classification system using anisotropic diffusion'. En conjunto forman una huella única.

Citar esto