Preservation of hyperbolic equilibrium points and synchronization in dynamical systems

C. Miranda-Reyes, G. Fernández-Anaya, J. J. Flores-Godoy

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Classic results of the dynamical systems theory are extended and used to study the preservation of synchronization in chaotical dynamical systems. This results show that synchronization can be preserved after changes are made to the linear part of the dynamical system. When the jacobian matrix of the system is evaluated in the hyperbolic points, the sign structure of the eigenvalues of this matrix determines if the system is stable or unstable. In this work, we establish the sufficient conditions to preserve the structure of this hyperbolic points. Also, control tools are used to achieve synchronization in dynamical systems. Numerical simulations to very the effectiveness of the method are presented.

Idioma originalInglés
Título de la publicación alojada2008 5th International Conference on Electrical Engineering, Computing Science and Automatic Control, CCE 2008
Páginas108-113
Número de páginas6
DOI
EstadoPublicada - 2008
Publicado de forma externa
Evento2008 5th International Conference on Electrical Engineering, Computing Science and Automatic Control, CCE 2008 - Mexico City
Duración: 12 nov. 200814 nov. 2008

Serie de la publicación

Nombre2008 5th International Conference on Electrical Engineering, Computing Science and Automatic Control, CCE 2008

Conferencia

Conferencia2008 5th International Conference on Electrical Engineering, Computing Science and Automatic Control, CCE 2008
País/TerritorioMexico
CiudadMexico City
Período12/11/0814/11/08

Huella

Profundice en los temas de investigación de 'Preservation of hyperbolic equilibrium points and synchronization in dynamical systems'. En conjunto forman una huella única.

Citar esto