Preserving synchronization under characteristic polynomial modifications

D. Becker-Bessudo, G. Fernandez-Anaya, J. J. Flores-Godoy

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

In this article we present a methodology under which stability and synchronization of a dynamical master/slave system configuration are preserved under specific modifications made to its Jacobian matrix's characteristic polynomial. We propose to modify the coefficients of the associated characteristic polynomial by calculating their value to the m-th power, with m an odd, positive integer. The objective is to show that under these modifications, hyperbolic critical points are preserved along the stable and unstable manifolds. It is also shown that a consequence of this approach is the preservation of the signature of the Jacobian matrix associated with the dynamical system. To illustrate the results we present several examples of well known chaotic attractors.

Idioma originalInglés
Título de la publicación alojada2nd IFAC Conference on Analysis and Control of Chaotic Systems, CHAOS09 - Proceedings
EditorialIFAC Secretariat
Páginas187-192
Número de páginas6
EdiciónPART 1
ISBN (versión impresa)9783902661654
DOI
EstadoPublicada - 2009
Publicado de forma externa

Serie de la publicación

NombreIFAC Proceedings Volumes (IFAC-PapersOnline)
NúmeroPART 1
Volumen2
ISSN (versión impresa)1474-6670

Huella

Profundice en los temas de investigación de 'Preserving synchronization under characteristic polynomial modifications'. En conjunto forman una huella única.

Citar esto