Stable Minimality of Expanding Foliations

Gabriel Núñez, Jana Rodriguez Hertz

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

1 Cita (Scopus)

Resumen

We prove that generically in Diffm1(M), if an expanding f-invariant foliation W of dimension u is minimal and there is a periodic point of unstable index u, the foliation is stably minimal. By this we mean there is a C1-neighborhood U of f such that for all C2-diffeomorphisms g∈ U, the g-invariant continuation of W is minimal. In particular, all such g are topologically mixing. Moreover, all such g have a hyperbolic ergodic component of the volume measure m which is essentially dense. This component is, in fact, Bernoulli. We provide new examples of diffeomorphisms with stably minimal expanding foliations which are not partially hyperbolic.

Idioma originalInglés
Páginas (desde-hasta)2075-2089
Número de páginas15
PublicaciónJournal of Dynamics and Differential Equations
Volumen33
N.º4
DOI
EstadoPublicada - dic. 2021

Huella

Profundice en los temas de investigación de 'Stable Minimality of Expanding Foliations'. En conjunto forman una huella única.

Citar esto