Sums of squares and quadratic persistence on real projective varieties

Grigoriy Blekherman, Rainer Sinn, Gregory G. Smith, Mauricio Velasco

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

1 Cita (Scopus)

Resumen

We bound the Pythagoras number of a real projective subvariety: the smallest positive integer r such that every sum of squares of linear forms in its homogeneous coordinate ring is a sum of at most r squares. Enhancing existing methods, we exhibit three distinct upper bounds involving known invariants. In contrast, our lower bound depends on a new invariant of a projective subvariety called the quadratic persistence. Defined by projecting away from points, this numerical invariant is closely related to the linear syzygies of the variety. In addition, we classify the projective subvarieties of maximal and almost-maximal quadratic persistence, and determine their Pythagoras numbers.

Idioma originalInglés
Páginas (desde-hasta)925-965
Número de páginas41
PublicaciónJournal of the European Mathematical Society
Volumen24
N.º3
DOI
EstadoPublicada - 2021
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Sums of squares and quadratic persistence on real projective varieties'. En conjunto forman una huella única.

Citar esto