The attractors in the complex Lorenz model

Xavier Gómez-Mont, José Job Flores-Godoy, Guillermo Fernández-Anaya

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

We address the question of finding the attractors of the complex Lorenz model (CLM), which is obtained by extending the space from R3 to C3, and defining the model by the same equations as the classical Lorenz model (LM). We have numerical evidence of 2 strong attractors un-related to the Lorenz attractor. We calculate its Lyapunov exponents and show that 2 of them are 0, and the other 4 are double and negative. Hence the attractors are non-chaotic. We show that they have a quasi-periodic nature. To decipher the structure of these attractors, we introduce the imaginary Lorenz model (ILM), which is defined in the same space C3 by multiplying with i = √-1 the Lorenz equations. Both models locally commute, and with its help we account for the double Lyapunov exponent 0 and show that the basin of attraction of each attractor is a big open set of C3. The chaotic limit set L ∪ ℂ3 obtained from the classical Lorenz attractor L0 of (LM) by moving it with the (ILM) has 2 positive Lyapunov exponents, but only captures a set of 6D-volume 0 in its basin of attraction.

Idioma originalInglés
Título de la publicación alojada3rd IFAC Conference on Analysis and Control of Chaotic Systems, CHAOS 2012
EditorialIFAC Secretariat
Páginas87-92
Número de páginas6
Edición12
ISBN (versión impresa)9783902823021
DOI
EstadoPublicada - 2012
Publicado de forma externa
Evento3rd IFAC Conference on Analysis and Control of Chaotic Systems, CHAOS 2012 - Cancun
Duración: 20 jun. 201222 jun. 2012

Serie de la publicación

NombreIFAC Proceedings Volumes (IFAC-PapersOnline)
Número12
Volumen45
ISSN (versión impresa)1474-6670

Conferencia

Conferencia3rd IFAC Conference on Analysis and Control of Chaotic Systems, CHAOS 2012
País/TerritorioMexico
CiudadCancun
Período20/06/1222/06/12

Huella

Profundice en los temas de investigación de 'The attractors in the complex Lorenz model'. En conjunto forman una huella única.

Citar esto